This post is part of a series of posts to analyse the digital me.
Collecting Spotify data with R
Spotify has made its data very accessible to endusers to play with. Their API provides you with a plethora of options to get to their data, which is a ton of fun to analyse.
To get started, you wil need to R packages to access the data and process it afterwards.
library('httr')
library('jsonlite')
library('dplyr')
library('tidyr')
library('zoo')
library('purrr')
library('RCurl')
You will also need access to the Spotify API, which is granted through a Client ID and Client Secret. You can get these by using your Spotify account and go to the Developers Page at Spotify.
Once you have your client data, you are ready to get access to the data with R. You will need to get a token the first time, after that, you can store it in a local file to ensure you don’t have to go back to the popup screen each time to get another one.
if(!file.exists(".spotify")){
print("no file")
#to get token FIRST TIME
browseURL(paste0('https://accounts.spotify.com/authorize?client_id=',client_id,'&response_type=code&redirect_uri=',website_uri,'/&scope=user-read-recently-played'),browser = getOption("browser"), encodeIfNeeded = FALSE)
#add new token
user_code <- user_code_value
#construct body of POST request FIRST TIME
request_body <- list(grant_type='authorization_code',
code=user_code,
redirect_uri=website_uri, #input your domain name
client_id = sp_client_id, #input your Spotify Client ID
client_secret = sp_client_secret) #input your Spotify Client Secret
#get user tokens FIRST TIME
user_token <- httr::content(httr::POST('https://accounts.spotify.com/api/token',
body=request_body,
encode='form'))
user_token$access_token -> token
auth_header <- httr::add_headers('Authorization'= paste('Bearer',token))
write(user_token$refresh_token, ".spotify")
}
if(file.exists(".spotify")) {
print("we have file")
#REFRESH
scan(file = ".spotify", what= list(id="")) -> red
as.character(red) -> refresh_code
request_body_refresh <- list(grant_type='refresh_token',
refresh_token=refresh_code,
redirect_uri=website_uri,
client_id = sp_client_id,
client_secret = sp_client_secret)
#get user tokens REFRESH
user_token_refresh <- httr::content(httr::POST('https://accounts.spotify.com/api/token',
body=request_body_refresh,
encode='form'))
user_token_refresh$access_token -> token
}
## [1] "we have file"
#THIS RUNS EVERYTIME
auth_header <- httr::add_headers('Authorization'= paste('Bearer',token))
recently_played <- httr::content(httr::GET('https://api.spotify.com/v1/me/player/recently-played',
query=list(limit=50,time_range='long_range'),auth_header))
The script returns a recently played list of trackes of maximum of 50. Unfortunately, Spotify doesn’t allow you to get all of your historical data. It is easy to run this script on a server hourly or daily to collect fresh data and update your dataset.
Get Spotify track data
Now that we have collected the 50 most recently played tracks, we will create a clean dataframe that we can store and analyse.
# generate the proper data.frame
toJSON(recently_played$items) -> df1
fromJSON(df1) %>% as.data.frame -> df2
df2$track -> df_track
df_track$name -> track_name
df_track$duration_ms -> track_duration_ms
df_track$id -> track_id
df_track$popularity -> track_popularity
df_track$album$name -> track_album
df_track$explicit -> track_explicit
as.list(df_track$external_urls) -> track_href
placeholder <- data.frame(list(height=1:3),list(url=1:3),list(width=1:3))
df_track$album$images[!lengths(df_track$album$images)] <- list(placeholder)
lapply(df_track$album$images, "[[", 2) -> album_images
lapply(album_images, "[[", 1) -> album_image_big
lapply(album_images, "[[", 3) -> album_image_small
df_track$album$id -> track_album_id
df2$played_at -> track_played_at
df_track$artists -> track_artists
lapply(track_artists, "[[", 4) -> track_artist_name
lapply(track_artist_name, `[[`, 1) -> track_artist_name
lapply(track_artists, "[[", 3) -> track_artist_id
lapply(track_artist_id, `[[`, 1) -> track_artist_id
do.call(rbind.data.frame, Map('c', track_id, track_name, track_album_id, track_album, track_artist_id, track_popularity, track_duration_ms, track_explicit, album_image_big, album_image_small, track_played_at)) -> track_details
colnames(track_details) <- c("track_id", "track_name", "track_album_id", "track_album", "artist_id", "track_popularity", "track_duration_ms", "track_explicit", "album_image_big", 'album_image_small', "track_played_at" )
This generates a clean dataframe with all the track data I need to analyse and visualise my Spotify data.
Some of the useful data is:
- The unique track ID used by Spotify to identify each song or version of a song The unique artist ID used by Spotify to identify the artist performing the track
- The track duration in ms
- Album data (Album ID, image url)
- Etc.
head(track_details,5)
## track_id track_name track_album_id
## 1 0iUano4euaiUETVUd1u0cx Nobody Move, Nobody Get Hurt 2IQ6OI4Yt3yZtB8j5E2lsa
## 2 5gAFjMCJToR9Qgj1i6Jgb9 Holy Mountain 78GME3qVL2ZmNpGF5lXLnm
## 3 1mppNVGh4ipsxIWUUA0QiH Girl From Mars 6WPJ2wQLi4SskpTkmofkr9
## 4 5cy5IStIn7OSHDEIgXeDyq Debaser 0DQyTVcDhK9wm0f6RaErWO
## 5 2YIOkqKgg3jZEFoL5qcEPT The Rat 4QR9jaNP6Ifh7eqXjhAHw2
## track_album artist_id track_popularity
## 1 With Love And Squalor 35YNL4wwv11ZkmeWWL51y7 53
## 2 Who Built The Moon? (Deluxe) 7sjttK1WcZeyLPn3IsQ62L 50
## 3 1977 2evydP72Z45DouM4uMGsIE 56
## 4 Doolittle 6zvul52xwTWzilBZl6BUbT 63
## 5 Bows + Arrows 6kFay2DQ5aZfeu5OsrF3Pw 57
## track_duration_ms track_explicit
## 1 192311 FALSE
## 2 234880 FALSE
## 3 210200 FALSE
## 4 171746 FALSE
## 5 262226 FALSE
## album_image_big
## 1 https://i.scdn.co/image/ab67616d0000b273e76e9b8bfb239b050c72a16f
## 2 https://i.scdn.co/image/ab67616d0000b273fc1b7a2670d9911b4c57a9db
## 3 https://i.scdn.co/image/ab67616d0000b27319e71d4dd7d826eb2bd4e544
## 4 https://i.scdn.co/image/ab67616d0000b273cafe9404f872e4c0e91a8cc8
## 5 https://i.scdn.co/image/ab67616d0000b27355088e0b87bcdb73f8a93c88
## album_image_small
## 1 https://i.scdn.co/image/ab67616d00004851e76e9b8bfb239b050c72a16f
## 2 https://i.scdn.co/image/ab67616d00004851fc1b7a2670d9911b4c57a9db
## 3 https://i.scdn.co/image/ab67616d0000485119e71d4dd7d826eb2bd4e544
## 4 https://i.scdn.co/image/ab67616d00004851cafe9404f872e4c0e91a8cc8
## 5 https://i.scdn.co/image/ab67616d0000485155088e0b87bcdb73f8a93c88
## track_played_at
## 1 2021-11-17T10:00:41.435Z
## 2 2021-11-17T09:57:28.727Z
## 3 2021-11-17T09:53:32.414Z
## 4 2021-11-17T09:50:01.832Z
## 5 2021-11-17T09:47:10.355Z
Get Spotify artist data
I also want to add data about the artist to my dataset. So from each of the tracks in my dataset, I will collect the artist ID and add them to my following query to collect the corresponding artist data
#prepare to get data about artists
response = POST(
'https://accounts.spotify.com/api/token',
accept_json(),
authenticate(sp_client_id, sp_client_secret),
body = list(grant_type = 'client_credentials'),
encode = 'form',
verbose()
)
token1 <- content(response)$access_token
#get list of artist ID's from recently played list
paste(as.character(track_artist_id),collapse=",",sep="") -> artist_comma
#query open api data
HeaderValue = paste0('Bearer ', token1)
URI = paste0('https://api.spotify.com/v1/artists?ids=', artist_comma)
response2 = GET(url = URI, add_headers(Authorization = HeaderValue))
artist_details = content(response2)
toJSON(artist_details) -> df4
fromJSON(df4) %>% as.data.frame -> df5
df6 <- data.frame(df5$artists.followers)
as.numeric(df6$total) -> artist_followers
df5$artists.popularity -> artist_popularity
df5$artists.id -> artist_id
df5$artists.genres -> artist_genres
df5$artists.name -> artist_names
lapply(df5$artists.images, `[`,1,2) -> track_artist_image
df6_6 <- data.frame(df5$artists.external_urls)
df6_6$spotify -> artist_url
do.call(rbind.data.frame, Map('c', artist_id, artist_popularity, artist_followers, artist_names, artist_url, track_artist_image)) -> artist_details
colnames(artist_details) <- c("artist_id", "artist_popularity", "artist_followers", "artist_name" ,"artist_url", "track_artist_image")
sapply(artist_genres, paste0 , collapse = "|") -> artist_details$artist_genres
head(artist_details,5)
## artist_id artist_popularity artist_followers
## 2 35YNL4wwv11ZkmeWWL51y7 49 202865
## 210 7sjttK1WcZeyLPn3IsQ62L 61 735281
## 3 2evydP72Z45DouM4uMGsIE 50 139952
## 4 6zvul52xwTWzilBZl6BUbT 72 2026668
## 5 6kFay2DQ5aZfeu5OsrF3Pw 51 164995
## artist_name
## 2 We Are Scientists
## 210 Noel Gallagher's High Flying Birds
## 3 Ash
## 4 Pixies
## 5 The Walkmen
## artist_url
## 2 https://open.spotify.com/artist/35YNL4wwv11ZkmeWWL51y7
## 210 https://open.spotify.com/artist/7sjttK1WcZeyLPn3IsQ62L
## 3 https://open.spotify.com/artist/2evydP72Z45DouM4uMGsIE
## 4 https://open.spotify.com/artist/6zvul52xwTWzilBZl6BUbT
## 5 https://open.spotify.com/artist/6kFay2DQ5aZfeu5OsrF3Pw
## track_artist_image
## 2 https://i.scdn.co/image/ab6761610000e5ebfeef05b83a21188652111c39
## 210 https://i.scdn.co/image/ab6761610000e5eb2e3c109a3ae96db3c5d83eca
## 3 https://i.scdn.co/image/ab6761610000e5ebe14300105196785b979c51c4
## 4 https://i.scdn.co/image/ab6761610000e5ebc93891745e7444b6d3edd341
## 5 https://i.scdn.co/image/ab6761610000e5eb9a2ce232c6ea3dfcd56add9b
## artist_genres
## 2 alternative dance|dance-punk|indie rock|modern rock|new rave
## 210 britpop|modern rock|rock
## 3 britpop|modern rock|pop rock
## 4 alternative rock|boston rock|modern rock|permanent wave|rock
## 5 alternative rock|freak folk|indie pop|indie rock|modern rock|stomp and holler
This data gives me insight in the artist:
- Name
- Popularity (on a scale from 1 to 100)
- Followers (users following the artist, another KPI for popularity)
- Image URL
One of the few caveats I have found in the Spotify data is that tracks are not assigned genres, but artists are. This means that there is no way to define the genre of a song, unless, you connect it to the performing artist. This is not always accurate for eclectic artists performing multiple genres.
Get Spotify track audio details
Spotify provides very detailed data for each individual track. The Spotify Insights blog has some cool posts on this topic. There are more technical details on audio analysis in the Spotify API documentation.
To get the Audio details for the tracks, we will use the track_id variable from our track dataframe and get more detailed data.
#get list of track ID's from recently played list
paste(as.character(track_id),collapse=",",sep="") -> track_comma
URI2 = paste0('https://api.spotify.com/v1/audio-features/?ids=', track_comma)
response3 = GET(url = URI2, add_headers(Authorization = HeaderValue))
track_special_details = content(response3)
toJSON(track_special_details) -> df9
fromJSON(df9) %>% as.data.frame -> df10
unnest(df10) ->df10
df10$audio_features.id -> track_special_id
#https://developer.spotify.com/web-api/get-audio-features/
as.numeric(df10$audio_features.key) -> track_special_key
as.numeric(df10$audio_features.mode) -> track_special_mode
as.numeric(df10$audio_features.acousticness) -> track_special_acousticness
as.numeric(df10$audio_features.danceability) -> track_special_danceability
as.numeric(df10$audio_features.energy) -> track_special_energy
as.numeric(df10$audio_features.tempo) -> track_special_tempo
as.numeric(df10$audio_features.speechiness) -> track_special_speechiness
as.numeric(df10$audio_features.instrumentalness) -> track_special_instrumentalness
as.numeric(df10$audio_features.liveness) -> track_special_liveliness
as.numeric(df10$audio_features.valence) -> track_special_valence
df10$audio_features.uri -> track_features_uri
df10$audio_features.track_href -> track_features_href
do.call(rbind.data.frame, Map('c', track_special_id, track_special_key, track_special_mode, track_special_acousticness, track_special_danceability, track_special_energy, track_special_speechiness, track_special_tempo, track_special_instrumentalness, track_special_liveliness, track_special_valence)) -> track_special_details
colnames(track_special_details) <- c("track_id", "track_key", "track_special_mode", "track_auccoustiness", "track_danceability", "track_energy", "track_speechiness", "track_tempo", "track_special_instrumentalness", "track_special_liveliness", "track_special_valence")
head(track_special_details,5)
## track_id track_key track_special_mode track_auccoustiness
## 1 0iUano4euaiUETVUd1u0cx 6 1 7e-04
## 2 5gAFjMCJToR9Qgj1i6Jgb9 1 1 4.26e-06
## 3 1mppNVGh4ipsxIWUUA0QiH 9 1 0.0054
## 4 5cy5IStIn7OSHDEIgXeDyq 5 0 1e-04
## 5 2YIOkqKgg3jZEFoL5qcEPT 6 0 1e-04
## track_danceability track_energy track_speechiness track_tempo
## 1 0.47 0.969 0.0968 144.012
## 2 0.429 0.968 0.0416 137.014
## 3 0.247 0.764 0.0472 154.707
## 4 0.489 0.913 0.0479 135.756
## 5 0.167 0.921 0.061 168.225
## track_special_instrumentalness track_special_liveliness track_special_valence
## 1 0 0.332 0.593
## 2 0.602 0.578 0.728
## 3 0 0.16 0.503
## 4 0.709 0.0703 0.539
## 5 0.0716 0.239 0.315
This is definitely the detailed data under the hood of Spotify’s engine. It provides very detailed information about the type of track I listened to including:
- Danceability
- Liveliness
- Energy
- Key
- Etc.
It allows me to analyse the type of music I listen to on different times of the week.
Merging it to one flat dataframe
To make it easier to use, I will use our three dataframes and merge them into one big dataframe. I will also clean up some of the data for future use.
# merge 3 data.frames to have one big one for all tracks
merged1 <- track_details %>%
mutate(track_played_at = as.POSIXct(track_played_at,
tz = "CET",
format = "%Y-%m-%dT%H:%M:%S")) %>%
left_join(artist_details, by="artist_id")
merged <- merged1 %>% left_join(track_special_details, by="track_id")
#kill duplicates
subset(merged,!duplicated(merged$track_played_at)) -> merged
as.numeric(as.character(merged$track_speechiness)) -> merged$track_speechiness
as.numeric(as.character(merged$track_danceability)) -> merged$track_danceability
as.numeric(as.character(merged$track_popularity)) -> merged$track_popularity
as.numeric(as.character(merged$track_duration_ms)) -> merged$track_duration_ms
as.numeric(as.character(merged$artist_popularity)) -> merged$artist_popularity
as.numeric(as.character(merged$artist_followers)) -> merged$artist_followers
as.numeric(as.character(merged$track_key)) -> merged$track_key
as.numeric(as.character(merged$track_special_mode)) -> merged$track_special_mode
as.numeric(as.character(merged$track_auccoustiness)) -> merged$track_auccoustiness
as.numeric(as.character(merged$track_energy)) -> merged$track_energy
as.numeric(as.character(merged$track_tempo)) -> merged$track_tempo
as.numeric(as.character(merged$track_special_instrumentalness)) -> merged$track_special_instrumentalness
as.numeric(as.character(merged$track_special_liveliness)) -> merged$track_special_liveliness
as.numeric(as.character(merged$track_special_valence)) -> merged$track_special_valence
This joined dataframe provides me with all the details I need to analyse and visualise my Spotify listening behaviour.
This post is part of a series of posts to analyse the digital me.